Il contributo del settore dei trasporti al cambiamento climatico¹

La domanda di trasporto è in forte espansione. Nel periodo 1990-2008 la domanda di trasporto passeggeri è aumentata del 34%, mentre per le merci si segnala un incremento del +20.4%.

Nel periodo 1990-2010, nel nostro Paese si è registrato un imponente incremento della domanda di trasporto (+26,2% per i passeggeri e +14.5% per le merci, limitatamente ai vettori nazionali, se si includono i vettori stradali esteri si registra un aumento di circa il 46%). Pur considerando la riduzione dei consumi di mobilità degli italiani dovuto alla crisi economica in atto, nel 2010, l'autovettura continua a rappresentare il mezzo di trasporto preferito; l'uso dell'autovettura è pari al 76,23% della ripartizione modale, a fronte del 6,2% dei mezzi su ferro e del 11,9% di autobus, pubblici e privati.

L'Italia detiene il primato mondiale di auto private pro-capite (corrispondente a 1,63 persone per vettura nel 2011) e ha 37,11 milioni di veicoli circolanti che percorrono circa 13000 km/anno (il 26% in più della media UE). Nel 2011 la densità automobilistica (n. autovetture per 1000 abitanti) risulta pari a 612 unità. Si rileva che in Italia la densità di auto rispetto alla popolazione residente è molto elevata, il dato nazionale è di gran lunga superiore, circa il 20%, a quello di Germania, Francia, Spagna e Gran Bretagna.

Per questo il trasporto su strada rappresenta un settore critico per il raggiungimento degli obbiettivi di Kyoto in quanto è responsabile di una parte significativa del consumo totale di energia.

Le emissioni del settore trasporti (esclusi i trasporti internazionali) sono aumentate del 15,3% nel periodo 1990-2011. Nel 2011 il trasporto ha rappresentato il 29.1% del totale delle emissioni energetiche di gas serra a livello nazionale e le autovetture hanno contribuito per circa il 56% a tale valore. Nel 2011 i trasporti sono stati responsabili del 24.1% delle emissioni totali nazionali di gas serra, di cui il 62.1% si produce nell'ambito del trasporto passeggeri su strada.

I fattori che determinano tali livelli elevati di emissioni di gas serra sono legati in parte alle prestazioni dei singoli modelli di autovettura in termini di consumi ed emissioni di CO2 e in parte alle elevate percorrenze annue dei veicoli e allo stile di guida del conducente.

Prestazioni delle autovetture

Il 5 giugno 2009, sulla Gazzetta Ufficiale dell'Unione Europea è stato pubblicato il Regolamento (CE) N. 443/2009 del Parlamento Europeo e del Consiglio del 23 aprile 2009, che definisce i livelli di prestazione in materia di emissioni delle autovetture nuove nell'ambito dell'approccio comunitario integrato finalizzato a ridurre le emissioni di CO2 dei veicoli leggeri.

Il Regolamento individua un target comunitario delle emissioni di CO2 delle autovetture nuove vendute annualmente nella Comunità, di 130 g CO2/km riferito alla media di tutte le autovetture nuove commercializzate nel 2012, da conseguire tramite miglioramenti tecnologici apportati ai motori. I restanti 10g/km dovranno essere raggiunti tramite misure tecniche complementari (e.g. pneumatici, carburanti, etc.).

Viene inoltre introdotto un obiettivo di lungo termine di 95 g di CO2/Km da raggiungere nel 2020

AZIONI INTRAPRESE DAL COMUNE DI BITONTO

Adesione al Patto dei Sindaci

Dopo l'adozione del Pacchetto europeo su clima ed energia nel 2008, la Commissione europea ha lanciato il Patto dei Sindaci per avallare e sostenere gli sforzi compiuti dagli enti locali nell'attuazione delle politiche nel campo dell'energia sostenibile. I governi locali, infatti, svolgono un ruolo decisivo nella mitigazione degli effetti conseguenti al cambiamento climatico, soprattutto se si considera che l'80% dei consumi energetici e delle emissioni di CO2 è associato alle attività urbane.

Al fine di tradurre il loro impegno politico in misure e progetti concreti, i firmatari del Patto si impegnano a preparare un **Inventario di Base delle Emissioni** e a presentare, entro l'anno successivo alla firma, un Piano d'azione per l'energia sostenibile in cui sono delineate le azioni principali che essi intendono avviare.

Il Comune di Bitonto ha aderito al Patto Europeo dei Sindaci in data 20 marzo 2013. Con questa adesione si aderisce all'obbiettivo cosiddetto 20-2020, ovvero alla riduzione delle emissioni di CO2 di almeno il 20% entro il 2020.

I Firmatari del Patto

Settimana Europea della Mobilità Sostenibile 2013

VANTAGGI ECONOMICI E AMBIENTALI DELL'UTILIZZO DI AUTO ELETTRICHE E IBRIDE

Test eseguiti con una TOYOTA Prius Plug In.

EVcharging ha eseguito dei test utilizzando la Toyota Prius Plug In. Partendo da un prezzo della benzina pari a 1,63 euro al litro e da un prezzo dell'energia elettrica pari a 0,12 euro ogni kWh, ha misurato un *risparmio complessivo del 53%*. Questo corrisponde a una spesa di 7,00 euro ogni 100 km percorsi nel caso di doppia ricarica quotidiana. Il dato migliora ulteriormente nel caso di una sola ricarica al giorno: la spesa scende a 6,20 euro ogni 100 km.

Sul piano della lotta alle emissioni nocive i valori di *emissioni di CO2 sono inferiori del* 58% rispetto a un modello a benzina di dimensioni analoghe e del 40% rispetto a una diesel della medesima categoria.

In media, abbiamo ricaricato l'auto 0,9 volte al giorno, percorrendo il 34% del tragitto quotidiano in modalità completamente elettrica. L'autonomia a zero emissioni raggiunta di 20 km, mentre quella complessiva toccata è stata di 850 km. Anche col motore termico attivato, la Prius Plug-in riesce a garantire consumi ed emissioni molto bassi, abbiamo raggiunto i 4.5 l/100 km REALI, ed 85 g/km di CO2 utilizzando l'auto in autostrada sulla Salerno-Reggio Calabria, tragitto meno favorevole per tali veicoli, con performance importanti in termini di abbassamento dei costi ed emissioni inquinanti.

Trenta centesimi per ricarica. Il calcolo dei costi di una ricarica inserendo tutte le voci di spesa, <u>NON SOLO QUELLA DELL'ENERGIA come si tende a pubblicizzare erroneamente</u>, è stato per singola ricarica pari a 0,30 euro, senza considerare la tariffa agevolata per le ore notturne.

SITUAZIONE ATTUALE DEI MEZZI UTILIZZATI DALLA POLIZIA LOCALE DI BITONTO

Attualmente la Polizia Locale dispone di:

- . N. 2 FIAT mod. GRANDE PUNTO a noleggio
- N. 3 FIAT mod. BRAVA a noleggio
- N. 2 FIAT mod. PANDA di proprietà

In relazione ai soli mezzi a noleggio i costi sostenuti dal 2010 al 2013 sono:

- € 33750/anno per 4 anni pari a 135000 € in 4 anni
- € 19500/anno per 4 anni per il carburante pari a 97500 € in 4 anni
- Ne consegue un costo auto mensile medio di € 887,50

Dal punto di vista dell'impatto ambientale dal 2010 al 2013:

- 150000 km/auto percorsi in 4 anni
- 126 g/km² x 2 x 150000 = 37,8 Tonn di CO2 emesse dalle 2 FIAT Grande PUNTO
- 146 g/km x 3 x 15000 = 65,7 Tonn di CO2 emesse dalle FIAT BRAVO

PROPOSTA DI MIGLIORAMENTO

Tipologia di veicoli proposti

Veicoli IBRIDI: (benzina+elettrico)

Toyota Auris Hybid Active 5 porte

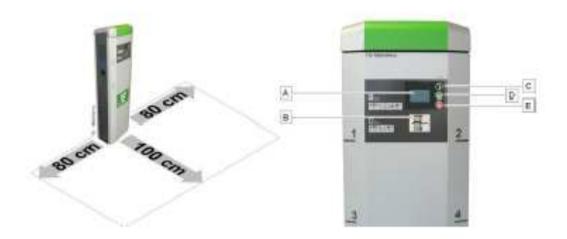
Toyota Prius 1.8 H ecvt Lounge 5 p

AUTO ELETTRICHE 100%

Nissan LEAF Visia (autonomia reale 130km)

Peugeot ION (autonomia reale 105km)

Renault ZOE (autonomia reale 105km)


EVCHARGING

Stazioni di ricarica (pubblici spazi)

Tutte le stazioni sono conformi alle Direttive CE 2004/108 e 2006/95, EN 61851-1, EN 61439-1, FprEN 61439-7

Le soluzioni per la ricarica dei veicoli elettrici proposte sono:

KeContact flex

Wall Box- colonnina KE P20

Ricarica diretta al parcheggio, Uffici pubblici, Spazi privati o semipubblici. Varianti studiate su misura per rispondere alle esigenze specifiche.

Caratteristiche:

- trifase fino a 22 kW, 32A
- monofase fino a 7.4 kW, 32A
- La soluzione ideale per l'ambito pubblico o semipubblico
- · La variate consente di ricaricare qualsiasi tipo di veicolo elettrico.
- Largh. x Alt. x Prof.: 240 x 495 x 163 mm (senza cavo)
- Peso: circa 4,8 kg (in funzione della variante)
- Altezza di montaggio raccomandata: circa 1200 mm

Altre opzioni del prodotto per l'identificazione o autorizzazione:

- Identificazione mediante RFID a norma ISO 14443
- Autorizzazione mediante interruttore a chiave

Quadro economico

Analizzando i costi di noleggio delle auto sostenibili prese in considerazione, compreso il costo dell'anticipo e dei costi per il carburante e/o l'energia elettrica, si sono ottenuti i risultati riportati nella tabella allegata.

Appare evidente che esiste una significativa convenienza economica passando al noleggio di auto ibride di piccola cilindrata come la TOYOTA YARIS (risparmio medio 14,8%) ovvero al noleggio di auto 100% elettriche come la PEUGEOT I-ON (risparmio medio 10,9%).

Volendo noleggiare auto ibride di maggiore cilindrata e prestazione è consigliabile la TOYOTA AURIS (risparmio medio del 6,9%). Tra le altre auto 100% elettriche, con una capacità di percorrenza maggiore, la migliore è la NISSAN LEAF, che comporterebbe un lieve incremento dei costi (+ 3,4%).

Considerando che l'obiettivo del Comune di Bitonto è quello della riduzione delle emissioni di CO2 in coerenza con l'adesione al Patto dei Sindaci. Il Migliore compromesso tecnicoambientale-economico è il seguente:

N. 4 PEUGEOT I-ON LEAF 100% elettrico

N. 1 TOYOTA YARIS HYBRID

Costo Totale annuo stimato: € 47160,00

Costo medio mensile per veicolo: € 786,00 (- 11,4% rispetto al costo attuale)

Costo Totale in 4 anni: € 188.640.00

Dal punto di vista dell'impatto ambientale dal 2014 al 2018 si stima:

- 150000 km/auto percorsi in 4 anni
- 79 g/km³ x 1 x 150000 = 11,85 di CO2 emesse dalla TOYOTA YARIS HYBRID
- 37,8 + 65,7 Tonn di CO2 non emesse dalle vecchie auto a noleggio
- TOTALE 53,85 TONN DI CO2 NON EMESSE IN ATMOSFERA

Conclusioni

Lo studio ha dimostrato come allo stato attuale sia ormai possibile orientare le scelte delle amministrazioni verso concetti di sostenibilità, a parità di costi. Lo studio non ha analizzato nello specifico le ricadute positive in termini di riduzione di rumore e di emissioni di particolato e altri residui della combustione, tuttavia questi aspetti sono facilmente prevedibili. E' pertanto auspicabile che il Comune di Bitonto, 8º Settore Polizia Locale e Annona intraprenda questo progetto di miglioramento della mobilità per i propri operatori, nella perfetta sintonia con gli obiettivi generali di sostenibilità che il Comune si è dato.

CALCOLO RISPARMIO

MODELLO AUTO SOSTENIBILE	MESI	COSTO AUTO	PERCORRENZA	NOLEGGIO	ANTICIPO	ANTICIPO	COSTO KM EXTRA	COSTO CARBURANTE MESE	COSTO TOTALE MESE	RISPARMIO
		€	KM/ANNO	€/mese	€	€/mese	€	€	€	%
TOYOTA AURIS HYBRID	48	22632	30000	547	1500	31,25	0,071	250	828	6,9%
TOYOTA YARIS HYBRID LOUNGE	48	17852	30000	487	1500	31,25	0,062	240	758	14,8%
TOYOTA PRIUS	48	26971	30000	597	1500	31,25	0,078	250	878	1,3%
RENAULT ZOE	48	22990	20000	732	2000	41,67	0,151	183	957	-7,5%
NISSAN LEAF	48	33103	30000	706	1500	31,25	0,093	183	920	-3,4%
PEUGEOT I-ON	48	28060	30000	610	0	0	0	183	3 793	10,9%

ILLUMINAZIONE PUBBLICA

IL CASO SESTO FIORENTINO

PROGETTO LED

Illuminazione Pubblica

I VANTAGGI DEL LED

RISPARMIO ENERGETICO RISPETTO ALLE TECNOLOGIE TRADIZIONALI

LA PROPOSTA

Proponiamo soluzioni di efficientamento energetico legate all'illuminazione con tecnologia LED attraverso la visita di un tecnico specializzato e la formulazione di una proposta tecnico-economica ad hoc per ogni singolo cliente.

IDENTIFICAZIONE DELLE POSSIBILI AREE DI INTERVENTO

VERIFICA DELLA FATTIBILITÀ TECNICA, ECONOMICA E FINANZIARIA DEL PROGETTO ED EVENTUALE FORMULAZIONE DELLA PROPOSTA

REALIZZAZIONE FINALE DELL'INTERVENTO IN GESTIONE COMPLETA O COORDINAMENTO LAVORI COMPRESO ASSISTENZA POST-VENDITA

I VANTAGGI PER LE PUBBLICHE AMMINISTRAZIONI

Nessun Investimento finanziario per l'intervento Nessuna modifica al «patto di stabilità»

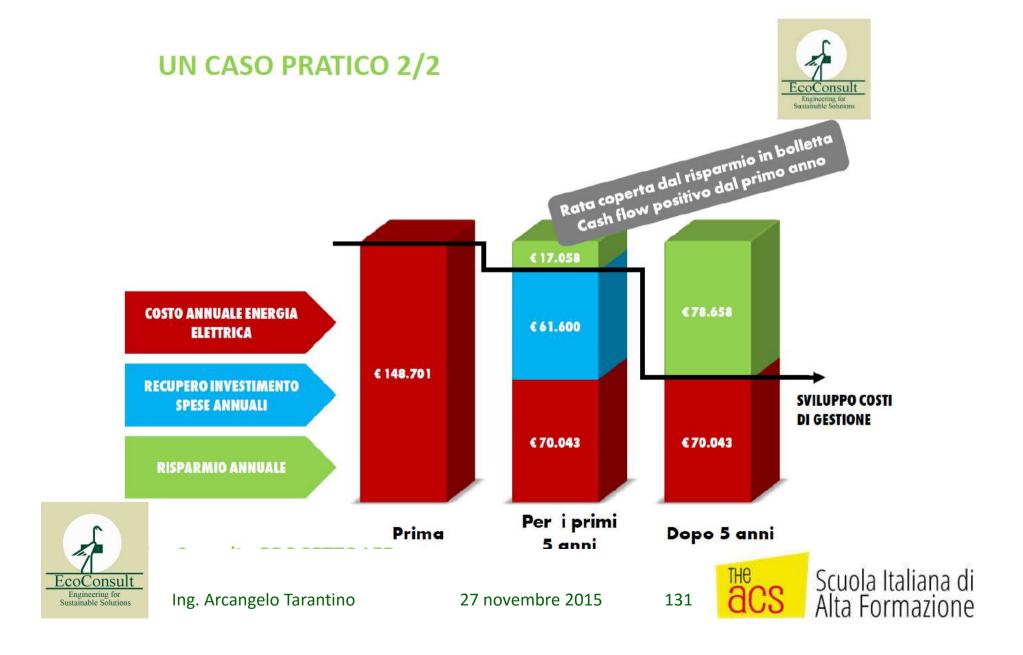
Variazione al bilancio -> riduzione delle sole voci di «spesa corrente»

Nessuna gara d'appalto, ma semplice delibera

L'attuale normativa, ed in particolare la L. 7 agosto 1990 n°241 e s.m.i. (artt. 15-11-3) consente alle amministrazioni pubbliche di concludere tra loro accordi al fine di disciplinare lo svolgimento in collaborazione di ATTIVITÀ DI INTERESSE COMUNE.

Contratto della durata massima di 5 anni -> nessun speculazione sulla manutenzione

Corpi LED garantiti fino a 10 anni e MADE IN ITALY)



UN CASO PRATICO 1/2

EcoConsult

MODALITÀ OPERATIVA

CENSIMENTO CORPI ILLUMINANTI

Lo specialista led verifica insieme ai tecnici comunali la tipologia ed il numero di corpi illuminanti oggetto della sostituzione. (COMPILAZIONE CHECK-LIST PROGETTO LED)

PROGETTO DI MASSIMA

Attraverso un software illuminotecnico si provvede ad effettuare una simulazione (corredata di grafico di luminescenza) della situazione ante intervento e post intervento al fine di calibrare il tipo di corpo sostituito.

BUSINESS PLAN ECONOMICO FINANZIARIO

A seguito della corretta progettazione si calcola quello che è il risparmio energetico conseguito dall'intervento e si procede alla valutazione finanziaria dell'intervento.

ILLUMINAZIONE A LED

Proposta tecnico economica con soluzioni Led ad Alta efficienza

Cliente: Comune di Sesto Fiornetino

P.za Vittorio Veneto 1

Sesto Fiorentino (FI)

3.1 Caratteristiche impianto

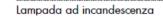
3.1.1 Dati impianto attuale

Di seguito riportiamo i dati sul funzionamento del parco illuminante attuale esplicitando i modelli delle lampade installate, la potenza assorbita e le relative ore di funzionamento annue.

		Stima stato attuale s	istema (d'illumi	nazione				
Ambiente - locale	Codice	Descrizione	Tipo Iampada	Potercus (W)	Ne. Lampade	Potenzo tot. (Kw)	Ore/anno di funcion	Shima consumo annua (Kwh)	Dima casto manuferzione annua
Numinacione pubblica (snodo)	119	Projettine stradale 1370 W JM - SAP	ALT	81	204	16,42	4.300	70.615	€5.117
(luminazione pubblica (snado)	118	Projetore shadale 1X50 W	ZAA .	58	2	0.12	4.300	495	€ 50
lluminacione pubblica (testa p.)	119	Projetore shadale 1X70 W JM - SAP	ALT	81	457	36,79	4.300	158.191	€ 11.463
lluminazione pubblica (testa p.)	118	Projetore shadale 1X50 W	JM	58	4	0,23	4.300	989	€100
Numinacione pubblica (snado)	117	Projetore stradale 1X100 W JM - SAP	ALT	115	347	39,91	4.300	171.592	€8.704
Numinacione pubblica (snodo)	116	Projetore stradale 1X125 W	MER	144	222	31,91	4.300	137.224	€ 5.569
Numinazione pubblica (tecto p.)	117.	Projetore shadale 1X100 W JM - SAP	ALT	115	427	49,11	4.300	211.152	€ 10.711
Suminacione pubblica (testa p.)	136	Projetore shadale 1X125 W	MER	144	294	42,26	4.300	181,729	€ 7.375
(Suminations pubblica (prodo)	123	Projetore stradale 1X150 W JM - SAP	ALT	173	45	7.94	4,300	34.121	€1.154
Numinacione pubblica (snodo)	116	Projetore stradale 1X125 W	MER	144	3	0,43	4.300	1.854	€75
Numinacione pubblica (testa p.)	123	Projetore stradale 1X150 W JM - SAP	ALT	173	45	7.76	4.300	33.379	€ 1,129
Numinacione pubblico (testo p.)	116	Projetore stradale 1X125 W	MER.	144	3	0.43	4.300	1.854	€75
(uninations pubblica (snodo)	120	Projetore shadale 1X150 W	SAP	173	1209	208,55	4.300	896.776	€ 30.326
Numinatione pubblica (lesta p.)	120	Projetore stradale 1X150 W	SAF	173	1282	221,15	4.300	950.924	€ 32.157
Numinacione pubblica (snado)	121	Projetore shodole 1X250 W	MER	288	30	8.63	4,300	37.088	€ 860
Numinacione pubblica (testa p.)	121	Projettine stradale 1X250 W	MER	288	31	8,93	4.300	38.324	€889
(furningzione pubblica (snodo)	124	Projetore stradale 1X250 W JM - SAP	ALT	288	311	89.41	4,300	384.474	€8.915
Numinazione pubblica (testa p.)	124	Projetore stradale 1X250 W JM - SAP	ALT	288	315	90.56	4,300	389.419	€ 9.030
(Juningzione pubblica (prodo)	122	Projetore stradale 1X250 W	JM	288	22	6.33	4.300	27.198	€ 631
Numinacione pubblica (snado)	125	Projetore shadale 1X400 W	SAP	460	97	44,62	4.300	191.866	€ 2.781
Illuminazione pubblica (hecto s.)	122	Projetore stradale 1X250 W	2M	288	22	6.33	4,300	27,198	€ 631
Numinacione pubblica (testa p.)	125	Projetore stradale 1X400 W	SAP	460	99	45.54	4,300	195,822	€ 2.838
(luminazione pubblica (arreda)	115	Projetore shadale 1370 W	SAP	81	40	3.22	4,300	13.846	€ 1.003
(fuminacione pubblica (arredo)	115	Projetore stradale 1X70 W	SAP	81	290	23.35	4,300	100.384	€ 7.274
Numinacione pubblica (arreda)	114	Projetore shodole 100 W SAP - 125 W MER	JM.	129	150	19,41	4.300	83.447	€ 3.763
(luminazione pubblica (arreda)	120	Projetore stradale 1K150 W	SAP	173	70	12.08	4,300	51,923	€ 1.756
(Juminatione pubblica (staffa)	113	Projetore shadale 1X70 W	JAA	81	7	0.56	4,300	2,423	€ 176
Numinazione pubblica (staffo)	120	Projetore shadale 1X150 W	SAP	173	4	0,69	4.300	2.967	€100
(Suminacione pubblica (staffa)	123	Projetore stradale 1X150 W JM - SAP	ALT	173	550	94.88	4,300	407.963	€ 13.796
Numinacione pubblica (staffa)	124	Projetore stradale 1X250 W JM - SAP	ALT	288	74	21,28	4.300	91,483	€ 2 121
(luminazione pubblica (staffa)	126	Projetore shadole 1X400 W JM - SAP	ALT	460	26	11.96	4,300	51,428	€ 745
TOTALE	-	1	23	1	6.683	1.150.78		4.048.140	€ 171.31

	<u> </u>
FcoCor	sult
Engineering Sustainable So	

Legende lipe lampeda							
FLUIO	Lampada fluorescenie	SAP	Sadio alta press	INC	Lampada ad incandescenza		
ALO	Lampada alagena	MER	Vapori di marcuno	JM.	Todori metallici		
DICE	Lampada dicroica	LED	Light emitting diode	ALT	Altro		



3.1.2 Dati impianto con soluzione Led

Di seguito riportiamo le ipotesi sul funzionamento del futuro parco illuminante a tecnologia Led esplicitando i modelli delle lampade installate, la potenza assorbita e le relative ore di funzionamento annue.

		Stima sistema d'illum	inazione	a Led					
Ambiente - locale	Articolo	Descriptions	Atras Not.	Polenza (W)	Nt. Lampade	Potenza tot (Kw)	Ore/onno di funcion.	Srima consuma annua (Kwh)	Rid % Consumi
(Numinations pubblics (snode)	1997 511 924	WLED-PRS4 Stradale 30W Prog	15%	30	204	6,12	4.300	22.369	68,3%
(Suminacione pubblica (snodo)	1997 511 924	WLED-PR54 Stradale 30W Prog	15%	30	2	0,06	4,300	219	-55.7%
Murinazione pubblica (testa p.)	1997 511 915	WLED-PR54 Stradale 30W Frog Attacco P.	15%	30	457	13,71	4,300	50.110	-68,3%
Huminazione pubblica (testa p.)	1997 511 915	WLED-PRS4 Stradale 30W Prog Attacco P.	15%	30	4	0,12	4.300	439	-55,7%
Huminations pubblica (snodo)	1997 511 925	WLED-PRS4 Stradale 45W Prog	15%	45	347	15,62	4.300	57,073	66.7%
(lluminatione pubblica (prodo)	1997 511 925	WLED-PRS4 Stradale 45W Prog	15%	45	222	9,99	4.300	36.513	-73,4%
Huminazione pubblica (testa p.)	1997 511 916	WLED-PRS4 Stradale 45W Prog Attacco P.	15%	45	427	19,22	4.300	70.231	66.7%
Humingsione pubblish (Note p.)	1997 511 916	WLED-PRS4 Stradale 45W Frog Attacco P.	15%	45	294	13,23	4.300	48.356	-73,4%
Illuminacione pubblica (prodo)	1997 511 926	WLED-PRS4 Stradale 60W Frog	15%	. 60	46	2,76	4.300	10.088	-70.4%
(luminatione pubblica (prodo)	1997 511 926	WLED-PRS4 Stradale 60W Prog	15%	60	3	0,18	4.300	658	-64.5%
Huminazione pubblica (testa p.)	1997 511 917	WLED-PRS4 Stradale 60W Prog Attacco P.	15%	60	45	2.70	4,300	9.869	70.4%
Huminations pubblica (testa p.)	1997 511 917	WLED-PRS4 Streedale 60W Prog Affacco P.	15%	60	1	0.18	4,300	658	64.5%
(Numinacione pubblica (grada)	1997 511 927	WLED-PRS4 Stradale 75W Prog	15%	75	1209	90,68	4,300	331.417	-63.0%
Illuminacione pubblica (testa p.)	1997 511 918	WLED-PRS4 Shodale 75W Frog Attacco P.	15%	75	1282	96,15	4.300	351,428	-63,0%
Illuminazione pubblica (snado)	1997 511 928	WLED-PRS4 Stradale 90W Prog	15%	90	30	2,70	4,300	9.869	73,4%
(Numinazione pubblica (testa p.)	1997 511 919	WLED-PRS4 Stradale 90W Prog Affacco P.	15%	90	21	2.79	4,300	10.197	73.4%
Huminazione pubblica (prodo)	1997 511 940	WLED-PRS4 Stradale 120W Prog	15%	120	311	37.32	4.300	136,405	-645%
Huminazione pubblica (testa p.)	1997 511 920	WLED-PRS4 Stradale 120W Prog Amocco P.	15%	120	315	37,80	4,300	138.159	64.5%
Humingzione pubblico (snodo)	1997 511 929	WLED-PRS4 Stradale 135W Prog	15%	135	22	2,97	4.300	10.855	-60,1%
Illuminacione pubblica (prodo)	1997 511 929	WLED-PRS4 Stradale 135W Prog	15%	135	97	13,10	4.300	47.862	-75,1%
Illuminazione pubblica l'esta p. l	1997 511 921	WLED-PRS4 Stradale 135W Prog Attacco P.	15%	135	22	297	4,300	10.855	40.1%
Huminazione pubblica (seta p.)	1997 511 921	WLED-PRS4 Stradale 135W Prog Attacco P.	15%	135	99	13.37	4,300	48.849	-75.1%
Huminations pubblica (arreda)	1997 513 044	WED-URBANIC-GLOBO 45W Prog Art. P	15%	45	40	1.80	4,300	6.579	52.5%
Numinacione pubblica (arredo)	1997 513 082	WLED-URBANICISP 45W Prog Sospi	15%	45	290	13,05	4.300	47.698	-52,5%
(lluminazione pubblica (arredo)	1997 513 083	WLED-LIRBANIC-SP 60W Prog Sosp.	15%	60	150	9,00	4.300	32.895	-60,6%
Huminazione pubblica (arredo)	1997 513 084	WLED-URBANICI-SP 30W Prog Soza.	15%	75	70	5.25	4.300	19.189	-63.0%
(Juninazione pubblica (staffa)	1997 512 983	WLED-PRS Projettore 45W Prop	15%	45	7	0.32	4,300	1.151	52.5%
Numinacione pubblica (staffa)	1997 512 984	WLED-PR.5 Projettore 75W Prog	15%	75	-4	0,30	4.300	1.097	-63.0%
Huminazione pubblica (staffa)	1997 512 985	WLED-PR5 Projettore 105W Prog	15%	105	550	57,75	4.300	211.076	48.3%
(Illumingaione pubblica (staffa)	1997 512 986	WLED-PRS Projectore 135W Prog	15%	135	74	9,99	4.300	36.513	40,1%
Huminacione pubblica (staffo)	1997 512 988	WLED-PR.5 Projectore 205W Prog	15%	205	26	5.33	4,300	19,481	-62.1%
TOTALE					6.683	486.50		1,778,158	-64,1%

6.683	486,50		1.778.158	-64,1%
26	5,33	4.300	19.481	-62,1%
74	9,99	4.300	36.513	-60,1%
550	57,75	4.300	211.076	-48,3%
4	0,30	4.300	1.097	-63,0%
7	0,32	4.300	1.151	-52,5%
70	5,25	4.300	19.189	-63,0%
150	9,00	4.300	32.895	-60,6%
290	13,05	4.300	47.698	-52,5%
40	1,80	4.300	6.5/9	-52,5%

Loganda tipo lampada							
FLUO	Lampada fluorescente	SAP	Sadio alla press	INC	Lampada ad incandescensa		
ALO	Lampado alogena	MER	Vapori di marcuno	JM	loduri metalliai		
DICE	Lampada dicroica	LED	Light emitting diade	ALT	Altro		

Business plan illuminazione a led

Stima situazione attuale				
Potenza nominale impianto Attuale Kw		1.150,73		
Spesa energia elettrica annua	€	1.009.421		
Consumo attuale annuo in Kwh		4.948.140		
Costo attuale di un Kwh	€	0,20		
Costo acquisto corpi illuminanti tradizionali	€			
Costi di manutenzione annui	€	171.312		
Aumento annuo costo energia		2,0%		

Stima soluzione con riqualificazione a led		
Potenza futura nominale impianto Kw		486,50
Spesa futura energia elettrica annua	€	362.744
Consumo futuro annuo in Kwh		1.778.158
Costo fornitura corpi illuminanti Led	€	2.458.166
Costo rimozione e installazione impianto	€	267.320
Costo Totale di rinnovamento	€	2.725.486

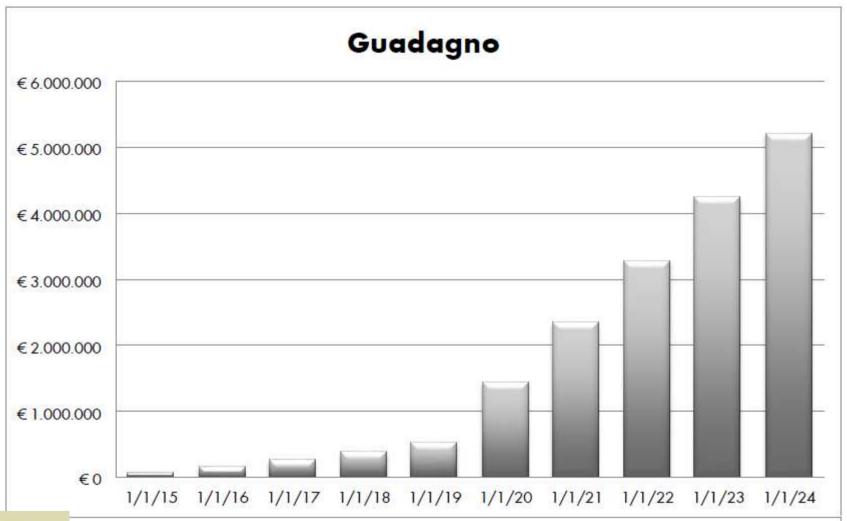
Stima Certificati Bianchi				
Numero di TEP stimati anno sulla riduzione dei consumi		1570,77		
Coefficiente di durabilità		2,65		
Rimborso stimato con costi ESCO	€	-		

Finanziario		
Modalità di finanziamento		CINFAI
Anticipo sul capitale da finanziare	€	-
Capitale da finanziare	€	2.725.486
Durata finanziamento anni		5
Rata finanziamento annuale	€	746.733

Risultati stimati		
risparmio da energia non acquistata in 10 anni	€	7.080.927
RISPARMIO DAI COSTI DI MANUTENZIONE IN 10 ANNI	€	1.875.819
RISPARMIO MEDIO MENSILE DI ENERGIA E MANUTENZIONE	€	74.640
REDDITIVITA' DEL CAPITALE INVESTITO IN 10 ANNI		FINANZIATO
RISPARMIO TOTALE CON COSTI DI INSTALLAZIONE IN 10 ANNI	€	5.223.078

Stima situazione attuale							
A		_	Potenza inst.	Consumo annuo Kwh	Spesa annua energia	Costi manutenzione	Totale costi
	1 €	0,20	1.150,7	4.948.140	€ 1.009.421	€ 171.312	€ 1.180.733
	2 €	0,21	1.150,7	4.948.140	€ 1.029.609	. € 174.738	€ 1.204.347
	3 €	0,21	1.150,7	4.948.140	€ 1.050.201	€ 178.233	€ 1.228.434
	4 €	0,22	1.150,7	4.948.140	€ 1.071.205	€ 181.798	. € 1.253.003
	5 €	0,22	1.150,7	4.948.140	€ 1.092.629	€ 185.434	. € 1.278.063
	6 €	0,23	1.150,7	4.948.140	€ 1.114.482	€ 189.142	€ 1.303.624
	7 €	0,23	1.150,7	4.948.140	. € 1.136.772	. € 192.925	€ 1.329.697
	8 €	0,23	1.150,7	4.948.140	€ 1.159.507	. € 196.784	. € 1.356.291
	9 €	0,24	1.150,7	4.948.140	€ 1.182.697	€ 200.719	€ 1.383.416
1	0 €	0,24	1.150,7	4.948.140	€ 1.206.351	€ 204.734	€ 1.411.085

Stima situazione futura							
A	Costo del	Potenza	Consumo annuo	Spesa annua	Costi	Totale costi	
	Kwh	A inst.	Kwh	energia	rinnovamento	Tolule Cosii	
1	€ 0,20	486,5	1.778.158	€ 362.744	€ 746.733	€ 1.109.478	
2	€ 0,21	486,5	1.778.158	€ 369.999	€ 746.733	€ 1.116.733	
(3)	€ 0,21	486,5	1.778.158	€ 377.399	€ 746.733	€ 1.124.132	
4	€ 0,22	486,5	1.778.158	€ 384.947	€ 746.733	€ 1.131.680	
5	€ 0,22	486,5	1.778.158	€ 392.646	€ 746.733	€ 1.139.379	
6	€ 0,23	486,5	1.778.158	€ 400.499	€ -	€ 400.499	
7	€ 0,23	486,5	1.778.158	€ 408.509	€ -	€ 408.509	
8	€ 0,23	486,5	1.778.158	. € 416.679	€ -	€ 416.679	
ς	€ 0,24	486,5	1.778.158	€ 425.013	€ -	€ 425.013	
10	€ 0,24	486,5	1.778.158	. € 433.513	€ -	€ 433.513	



Stima andamento economico finanziario								
A 1/1/15	Costi attuali		Costi futuri		Certificati Bianchi		Cash flow	Guadagno
	5 € 1.18	0.733	€	1.109.478	€	- 55	€ 71.255	€ 71.255
1/1/16	5 € 1.20	4.347	€	1.116.733	€	23	€ 87.615	€ 158.870
1/1/17	7 € 1.22	8.434	.€	1.124.132	€	5)	€ 104.302	€ 263.171
1/1/18	3 € 1.25	3.003	€	1.131.680	€	+3	€ 121.322	€ 384.494
1/1/19) € 1.27	8.063	€	1.139.379	€	2	€ 138.684	€ 523.177
1/1/20) € 1.30	3.624	-€	400.499			€ 903.125	€ 1.426.303
1/1/21	1.32	9.697	€	408.509			€ 921.188	€ 2.347.490
1/1/22	2 € 1.35	6.291	.€	416.679			€ 939.612	€ 3.287.102
1/1/23	3 € 1.38	3.416	-€	425.013			€ 958.404	€ 4.245.506
1/1/24	1.41	1.085	€	433.513			€ 977.572	€ 5.223.078

Infrastruttura Dati Cittadina

IL CASO COMUNE TIPO

IL PROGETTO

Una rete in Banda Larga di proprietà ed a costo zero per l'Amministrazione è la proposta per costruire "La Città Wireless". L'intervento, quando possibile, è basato sul principio del *project financing*: sosteniamo tutti i costi e tutti i rischi per la costruzione ed il funzionamento della rete, determinando l'ammodernamento e la sostituzione di tutti i vecchi contratti telefonici e di rete dell'Ente con collegamenti in Banda Larga. Il progetto consente di servire in banda larga (voce, dati, ecc.) tutti i siti risultanti sotto "l'ombrello" di copertura.

OBIETTIVI E VANTAGGI

Riduzione dei costi

Una rete wireless produce immediatamente una riduzione dei costi per le telecomunicazioni; il risparmio consente di ammortizzare in pochi anni il valore dell'infrastruttura; al termine dell'intervento i risparmi diventeranno ancora maggiori, abbattendo nella maggioranza dei casi di oltre il 50% le relative voci di bilancio.

Innovazione concreta

Una rete digitale in banda larga è tra i fattori più importanti che determinano lo sviluppo o, in assenza, l'arretramento di un territorio. Quando un territorio ne dispone come di cosa propria esso è in grado di elaborare strategie di sviluppo e di innovazione piene ed autonome, senza condizionamenti esterni da fornitori di tecnologia.

SERVIZI INNOVATIVI

Telefonia VoIP (Voice over Internet Protocol)

Tutte le sedi nella copertura della Città Wireless utilizzano la tecnologia VoIP. Le chiamate interne alla rete sono completamente gratuite ed avvengono componendo una numerazione interna a 3 o 4 cifre.

Connettività IP ed accesso ad Internet

Ciascuna delle sedi interessate dall'intervento è collegata su protocollo IP a tutte le altre. La rete permette di gestire un solo collegamento ad Internet per tutte le sedi con una semplificazione (e quindi con un risparmio) nella gestione della rete e nel monitoraggio. L'accesso ad Internet può essere governato con politiche specifiche e differenziate per utenti e gruppi.

Servizi di comunicazione integrata

Il progetto prevede l'attivazione di sistemi integrati per la gestione unificata delle comunicazioni, con i quali, ad esempio, gli utenti possono trasmettere I fax ricevuti, via web. Grazie all'integrazione con l'email, i sistemi fax possono smistare automaticamente via mail sia le notifiche di trasmissione che i fax ricevuti.

Predisposizione di altri servizi innovativi

Nell'area coperta dai collegamenti della Città Wireless è possibile attivare nuove connessioni e nuovi servizi, con facilità ed a costi marginali. Tra questi vanno ricordati il collegamento di aree di videosorveglianza per la sicurezza del cittadino e l'attivazione di aree Hotspot per l'accesso ad Internet. Tra i servizi complementari destinati all'Amministrazione stessa, merita grande attenzione un sistema di gestione informatica e dematerializzazione della corrispondenza, che costituisce un decisivo contributo all'efficienza ed alla semplificazione dei processi interni.

INTERLOCUTORI

Gli interlocutori con cui intavolare un dialogo sulla eventuale realizzazione della Città Wireless, sono i seguenti.

Sindaci, Assessori all'Innovazione, Assessori al Bilancio, Assessori alle Finanze, Assessori alla Programmazione Economico-Finanziaria

Infrastruttura dati cittadina – Caso di Studio

FASI DEL PROGETTO e TEMPISTICHE

PRESENTAZIONE
PROGETTO – 1 week
Analisi delle esigenze
funzionali e di bilancio della
Pubblica Amministrazione.

RACCOLTA DELLE
SPECIFICHE – 1 week
Raccolta dei dati di
interesse (numero sedi
coinvolte, servizi da attivare,
ecc.)

Realizzazione di una prima ipotesi progettuale in base ai dati raccolti

In casi dei feedback positivo sull'ipotesi di progetto si procede ad effettuare il sopralluogo del territorio PROGETTO
ESECUTIVO - 1 week

Elaborazione del progetto esecutivo, in base anche al rapporto contrattuale che si intende attivare

Realizzazione della rete wireless sui siti individuati, allestimento dei servizi previsti

Infrastruttura dati cittadina – Caso di Studio

SOSTENIBILITA' ECONOMICA

Il principio economico della Città Wireless è quello di determinare immediatamente nel bilancio comunale una riduzione dei costi per telecomunicazioni; al termine dell'intervento i risparmi diventeranno ancora maggiori, abbattendo nella maggioranza dei casi di oltre il 50% le relative voci di bilancio

CONCLUSIONI

I progetti Città Wireless si integrano facilmente con progetti a rete di varia natura (dai tributi, al monitoraggio ambientale, dall'efficientamento energetico al controllo del traffico).

IMPIANTO DI CONDIZIONAMENTO

IL CASO HOTEL EXCELSIOR (BARI)

EFFICIENTAMENTO IMPIANTO CONDIZIONAMENTO

AZIENDA: HOTEL EXCELSIOR BARI

ATTIVITÀ: ALBERGO E SALE CONVEGNI

STANZE: 150

CONSUMI ENERGETICI: > 380 MWH/ANNO

RIFERIMENTI BREFS: ENERGY EFFICIENTY BREF FEBBRAIO 2009
PARAGRAFO BREFS: 3.33 – CHILLERS AND COOLING SYSTEM
RIFERIMENTI BREFS SPECIFICA: ICS (INDUSTRIAL COOLING SYSTEM) BREF DICEMBRE 2001

AZIONI POSTE IN ESSERE

- 1. SOSTITUZIONE DI N.2 PDC 800 KWTERMICI (COP MAX 2,0) CON N.10 PDC SPLITTATE (2 MACCHINE ESTERNE + 1 GRUPPO IDRONICO) DA 80 KWTERMICI (COP MAX 4,0).
 - MODULAZIONE «A GRADINI» SU 4 STEP: 200 400 600 800 KWTERMICI
- 2. GESTIONE ELETTRONICA DELL'IMPIANTO DEL TIPO A «A CASCATA» CON MODULAZIONE 1/10 SU OGNI PDC E MESSA IN FUNZIONE PROGRESSIVA IN RAGIONE DELLA RICHIESTA DI STANZE OCCUPATE

RISULTATI

CONSUMO DI ENERGIA PRIMA DELL'INTERVENTO:

380,00 MWH/ANNO NEL 2013

61 KWH/PRESENZA ANNO 2013 (6361 PRESENZE)

408,00 MWH/ANNO NEL 2014

85 KWH/PRESENZA ANNO 2014 (4771 PRESENZE)

CONSUMO DI ENERGIA DOPO DELL'INTERVENTO (STIMA):

TRA 145,00 E 180,00 MWH/ANNO (-53%)

RISPARMIO: 408,00 MWH - 190,00 MWH = 218,00 MWH

INVESTIMENTO:200.000,00€

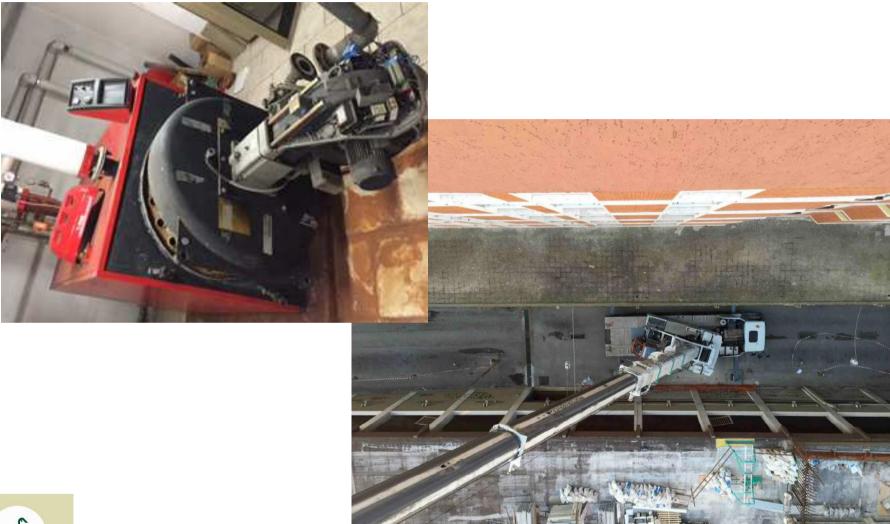
RISPARMIO: 380 MWH/ANNO PARI A CIRCA 62.478,00€/ANNO

DETRAZIONE FISCALE:

130.000,00€ IN 10 ANNI PARI A 13.000,00€/ANNO

TOTALE RISPARMIO: 75.478,00€/ANNO

ROI: 2,65 ANNI



INTERVENTO INTEGRATO

IL CASO PISCINA COMUNALE DI MATERA

EFFICIENTAMENTO IMPIANTI RISCALDAMENTO E CONDIZIONAMENTO

AZIENDA: PISCINA LIGHT - MATERA

ATTIVITÀ: PISCINA COPERTA

CONSUMI ENERGETICI: 25.000 KWH/ANNO 100.000 MC/ANNO

SITUAZIONE PRE-INTERVENTO

- N.2 CALDAIE DA 212,5 KW 0 425 KWTERMICI
- 2. N.1 SCAMBIATORE DI CALORE IN CONTINUO DA 260.000 KCAL/H
- 3. N.1 GRUPPO FRIGO DA 115 KWFRIGO
- 4. N.6 UTA

		n°
CENTRALE TERMICA PER RISCALDAMENTO, RAFFRESCAMENTO, ACS CON IMPIANTO SOLARE	Pompa di calore integrataHybrid (alimentato a gas metano, del tipo a condensazione, ad alto rendimento e basse emissioni di Nox, per installazione murale), del tipo aria-acqua del tipo a due sezioni, adatta per produrre ACS ad alta Temperatura	10
	Accumuli di acqua tecnica	11
	Pompa di calore aria-acqua del tipo a due sezioni, reversibile, per acqua calda a bassa temperatura	1
	pannelli solari termici, del tipo ad alto rendimento, collegati a gruppi di 5 ad accumulo di acqua tecnica della capacità di 500 litri - pannelli a svuotamento	40
	sistema di controllo e supervisione manodopera	1

SOTTOCENTRALE	Pompa di calore aria-acqua del tipo a due sezioni, reversibile, per acqua calda a bassa temperatura	1
DI PRODUZIONE RISCALDAMENTO PISCINA	pannelli solari termici, del tipo ad alto rendimento, collegati a gruppi di 5 ad accumulo di acqua tecnica della capacità di 500 litri - pannelli a syuotamento	30
	Accumuli di acqua tecnica	4
	sistema di controllo e supervisione manodopera	1

RISULTATI

CONSUMO DI ENERGIA PRIMA DELL'INTERVENTO:
 25.000 KWH/ANNO ENERGIA ELETTRICA
 100.000 MC/ANNO GAS

Consumo di energia dopo dell'intervento (stima):
 11.250 KWh/anno energia elettrica (-55%)
 45.000 MC/anno gas (-55%)

INVESTIMENTO: 214.000,00€

RISPARMIO: 46.800,00€/ANNO

DETRAZIONE FISCALE: 13.910,00€/ANNO

TOTALE RISPARMIO: 73.818,00€/ANNO

ROI: 2.9 ANNI

